

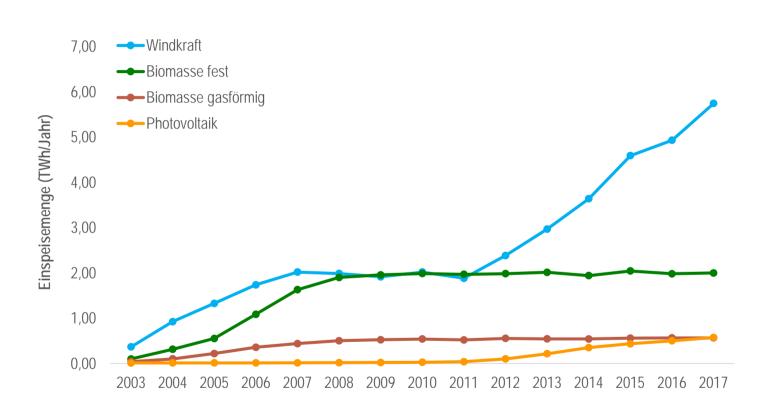
Quo vadis? Die Förderung von erneuerbaren Strom in Österreich

AK-Klimadialog 14.9.2018

AK WIEN

Department of Economics and Social Sciences

Johannes Schmidt, Johann Baumgartner Institut für Nachhaltige Wirtschaftsentwicklung



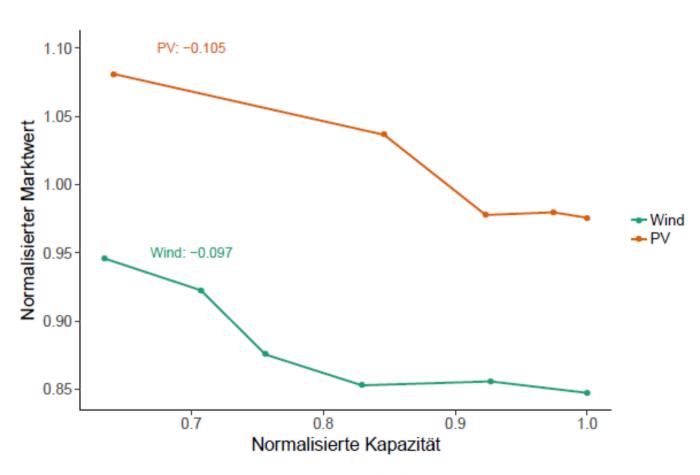
Ökostromausbau 2003-2017

Department of Economics and Social Sciences

Eigene Darstellung nach Daten von OeMAG Abwicklungsstelle für Ökostrom AG (2018)

Probleme der Ökostromförderung mit fixen Einspeisetariffen

Department of Economics and Social Sciences


- Anreize für Systemintegration
- Festlegung der Förderhöhe

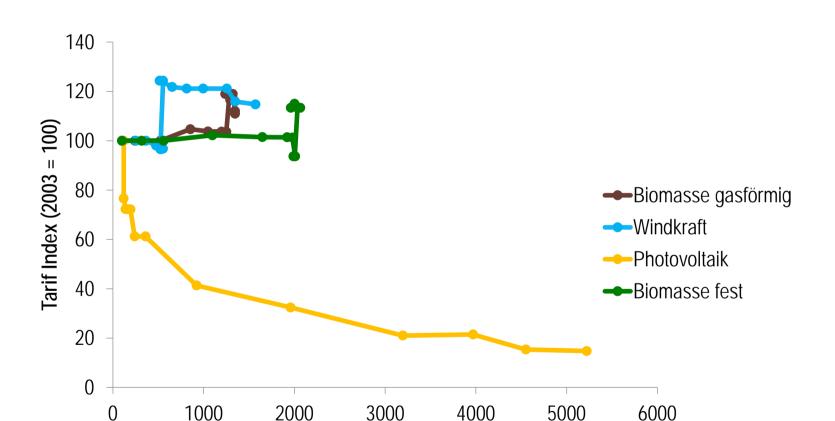
Systemintegration - Marktwert

Department of Economics and Social Sciences


Eigene Darstellung nach Daten von Open Power System Data (2017)

Systemintegration - Ausgleichsenergiekosten

Entwicklung AE-Kosten [EUR] / Jahr



OeMAG. https://www.oem-ag.at/fileadmin/user_upload/Dokumente/statistik/ausgleichsenergie/Ausgleichsenergiekosten_von_2004_bis_2016.JPG

WIEN

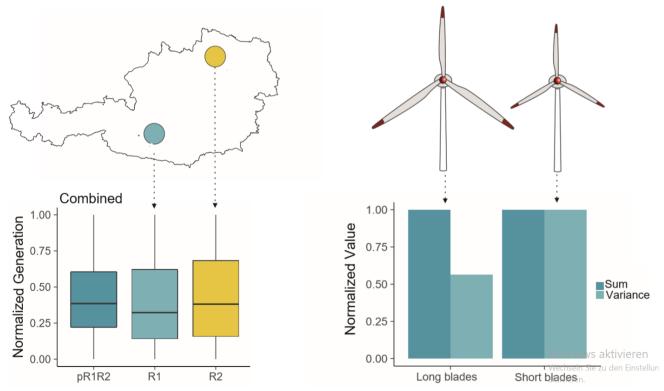
Festlegung der Förderhöhe

Ausbau Index (2003 = 100)

Eigene Darstellung nach Daten von OeMAG Abwicklungsstelle für Ökostrom AG (2018)

Department of Economics and Social Sciences

(I) Erhöhung der Anreize zur Systemintegration


Beispiele Verbesserung Systemintegration - Langfristig

Räumliche Diversifikation

"Systemfreundliche" Windturbinen

Schmidt, Johannes (2017). We've got the power? Insights into the energy transition from an integrated bottom-up modelling perspective. Habilitationsvortrag.

Beispiele Verbesserung Systemintegration - Kurzfristig

- Aktive Teilnahme an Balancing- und Regelenergiemärkten
 - Bis zu ~1/3 höhere Erlöse (Skytte and Bobo, 2018).
- Systemintegration braucht aber auch andere Maßnahmen (Speicher, sektorale Integration, Elektrifizierung, ...)

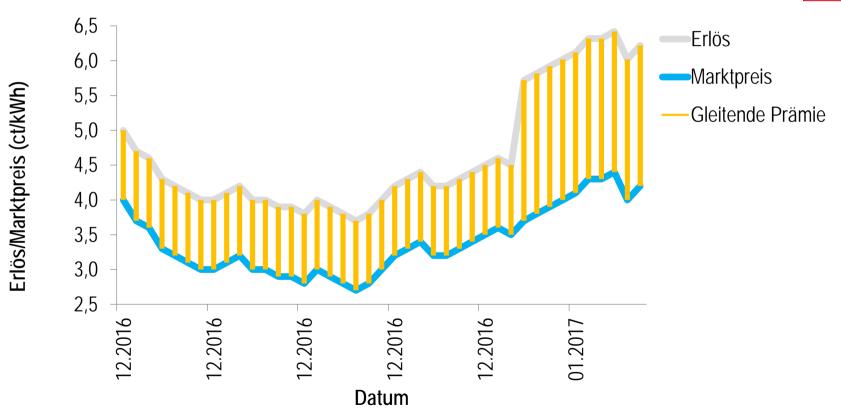
Skytte, Klaus. Bobo, Lucien (2018). Increasing the value of wind: From passive to active actors inmultiple power markets. WIREs Energy and Environment.

Überblick Fördersysteme

	Fixer Tarii	Pramien
Ausbaueffektivität	Hoch	Hoch
Statische Kosteneffizienz	je nach Ausgestaltung	je nach Ausgestaltung
Dynamische Kosteneffizienz	Hoch	Hoch
Anreiz zur Systemintegration	Niedrig	Hoch

Fivon Tonif

Eigene Darstellung


Drämian

Department of Economics and Social Sciences

Gleitende Prämie

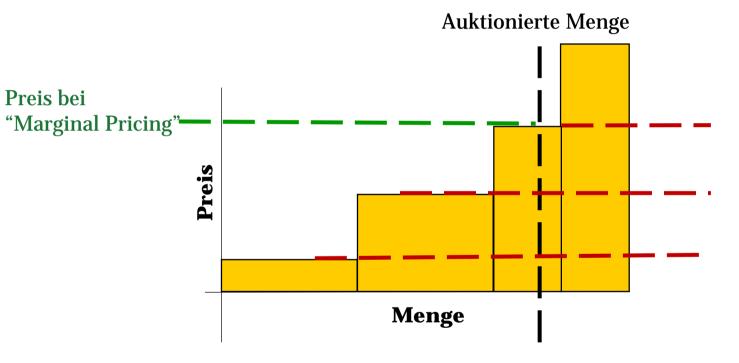
Eigene Darstellung

A

Department of Economics and Social Sciences

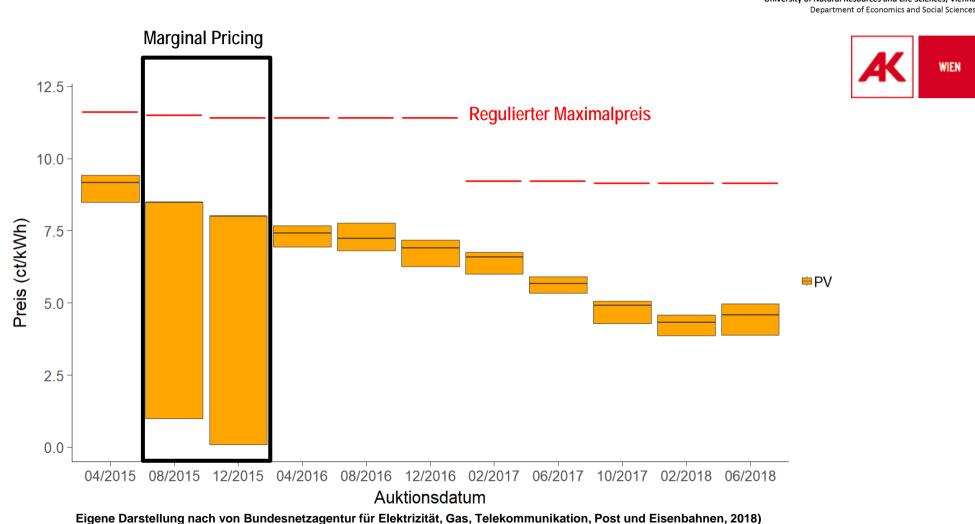
(II) Festlegung von Prämienhöhen

Festlegung von Prämienhöhen


	Regulierter Tarif	Ausschreibungen
Kosteneffizienz	Niedrig	Hoch
Anreiz zur Bereitstellung privater Informationen	Niedrig	Hoch
Transaktionskosten	Niedrig	Hoch
Realisierungsquote	Hoch	Je nach Ausgestaltung

Auktion - Beispiel

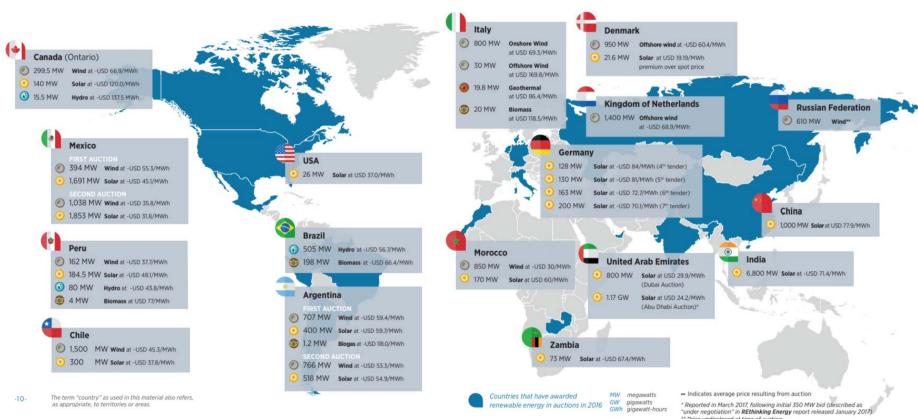
University of Natural Resources and Life Sciences, Vienna
Department of Economics and Social Sciences



Preise bei "Pay-as-Bid"

Beispiel PV-Auktionen Deutschland

WIEN



Department of Economics and Social Sciences

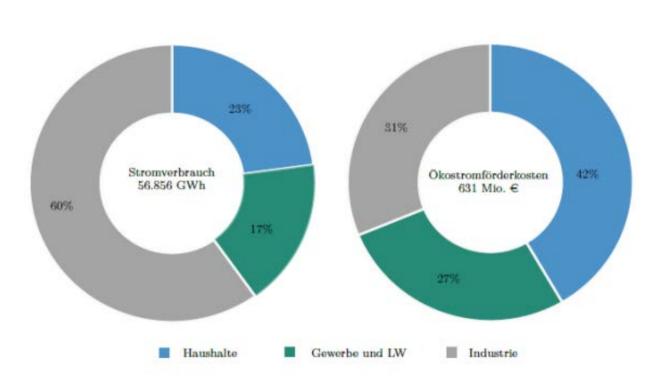
You'll never walk alone

IRENA (2016). Renewable Energy Auctions: Analysing 2016. http://www.irena.org/publications/2017/Jun/Renewable-Energy-Auctions-Analysing-2016

University of Natural Resources and Life Sciences, Vienna Department of Economics and Social Sciences

(III) Weitere Aspekte der Förderpolitik

Stabile, planbare Rahmenbedingungen



- Kosten in definiertem Rahmen halten
- Keine Stop&Go Förderpolitik
- Regelmäßige Anpassung und Kommunikation der Ausbauziele und Fördermaßnahmen

Kostenakzeptanz

Department of Economics and Social Sciences

- Kostenübernahme durch KonsumentInnen vs. Kostenübernahme durch Staatshaushalt
- Möglichst breite Kostenverteilung

Austaller, Anna (2017). Analyse der sozialen Verträglichkeit des Ökostromausbaus in Österreich. Diplomarbeit, Universität für Bodenkultur Wien. https://zidapps.boku.ac.at/abstracts/download.php?dataset_id=17318&property_id=107

Empfehlungen

- Umstellung fixer Einspeisetarife auf ein gleitendes Prämiensystem mit jährlicher Anpassung
- Auktionierung der Prämien mit administrativ festgelegten Obergrenzen
- Experimente mit technologiespezifischen und technologieneutralen Auktionen
- Stabile und planbare Rahmenbedingungen
- Breite Verteilung der Kosten

Vielen Dank für Ihre Aufmerksamkeit!

Johannes Schmidt (<u>johannes.schmidt@boku.ac.at</u>)

Johann Baumgartner (<u>johann.baumgartner@boku.ac.at</u>)

Universität für Bodenkultur Wien

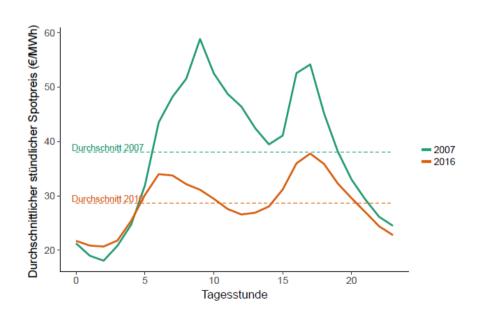
Department für Wirtschafts- und Sozialwissenschaften
Institut für Nachhaltige Wirtschaftsentwicklung
Feistmantelstraße 4, 1180 Wien

Auszug verwendeter Literatur- und Datenquellen

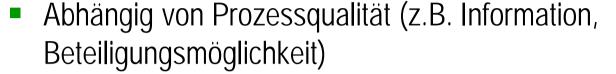
University of Natural Resources and Life Sciences, Vienna Department of Economics and Social Sciences

- Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen. (2018). Ausschreibungen nach dem EEG. Retrieved 11 September 2018, from https://www.bundesnetzagentur.de/DE/Home/home_node.html
- Commission européenne, & Direction générale de la mobilité et des transports. (2016). EU energy, transport and GHG emmissions: trends to 2050?: reference scenario 2016. Luxembourg: Office for official publications of the european communities.
- Couture, T., & Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy, 38(2), 955–965. https://doi.org/10.1016/j.enpol.2009.10.047
- de Mello Santana, P. H. (2016). Cost-effectiveness as energy policy mechanisms: The paradox of technology-neutral and technology-specific policies in the short and long term. Renewable and Sustainable Energy Reviews, 58, 1216–1222. https://doi.org/10.1016/j.rser.2015.12.300
- Europäische Kommission. (2014). Leitlinien für staatliche Umweltschutz- und Energiebeihilfen 2014-2020.
- Grösche, P., & Schröder, C. (2014). On the redistributive effects of Germany's feed-in tariff. Empirical Economics, 46(4), 1339–1383.
- Held, A., Ragwitz, M., Gephart, M., de Visser, E., & Klessmann, C. (2014). Design features of support schemes for renewable electricity.
- Hirth, L. (2013). The market value of variable renewables. Energy Economics, 38, 218–236. https://doi.org/10.1016/j.eneco.2013.02.004
- Hübler, M., Schenker, O., & Fischer, C. (2015). Second-best analysis of European energy policy: is one bird in the hand worth two in the bush? Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2710649
- International Energy Agency, Nuclear Energy Agency, & Organisation for Economic Co-operation and Development. (2015). Projected Costs of Generating Electricity 2015 Edition.
- IRENA. (2017). Renewable Energy Auctions: Analysing 2016. IRENA, Abu Dhabi.
- Kalkuhl, M., Edenhofer, O., & Lessmann, K. (2013). Renewable energy subsidies: Second-best policy or fatal aberration for mitigation? Resource and Energy Economics, 35(3), 217–234. https://doi.org/10.1016/j.reseneeco.2013.01.002
- Noothout, P., de Jager, D., Tesnière, L., van Rooijen, S., Karypidis, N., Brückmann, R., ... others. (2016). The impact of risks in renewable energy investments and the role of smart policies. DiaCore Report. Retrieved from http://climateobserver.org/wp-content/uploads/2016/02/diacore-2016-impact-of-risk-in-res-investments.pdf
- OeMAG Abwicklungsstelle für Ökostrom AG. (2017). Einspeisemengen und Vergütungen. Retrieved 26 April 2017, from http://www.oem-ag.at/de/oekostromneu/einspeisemengen/
- Ondraczek, J., Komendantova, N., & Patt, A. (2015). WACC the dog: The effect of financing costs on the levelized cost of solar PV power. Renewable Energy, 75, 888–898. https://doi.org/10.1016/j.renene.2014.10.053
- Österreichs E-Wirtschaft. (2015). EMPOWERING AUSTRIA Die Strategie von Oesterreichs Energie für den Einstieg in eine klimaneutrale Stromversorgung Österreichs.
- Schallenberg-Rodriguez, J., & Haas, R. (2012). Fixed feed-in tariff versus premium: A review of the current Spanish system. Renewable and Sustainable Energy Reviews, 16(1), 293–305. https://doi.org/10.1016/j.rser.2011.07.155
- Scherhaufer, P., Höltinger, S., Salak, B., Schauppenlehner, T., & Schmidt, J. (2017). Patterns of acceptance and non-acceptance within energy landscapes: Acase study on wind energy expansion in Austria. Energy Policy. https://doi.org/10.1016/j.enpol.2017.05.057
- Schmidt, J., Lehecka, G., Gass, V., & Schmid, E. (2013). Where the wind blows: Assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines. Energy Economics, 40, 269–276. https://doi.org/10.1016/j.eneco.2013.07.004
- Umweltbundesamt. (2016). Szenario erneuerbare Energie 2030 und 2050.
- Veigl, A. (2017). ENERGIE- UND KLIMAZUKUNFT ÖSTERREICH: SZENARIO FÜR 2030 UND 2050.

University of Natural Resources and Life Sciences, Vienna
Department of Economics and Social Sciences

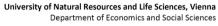


Systemintegration - Preise

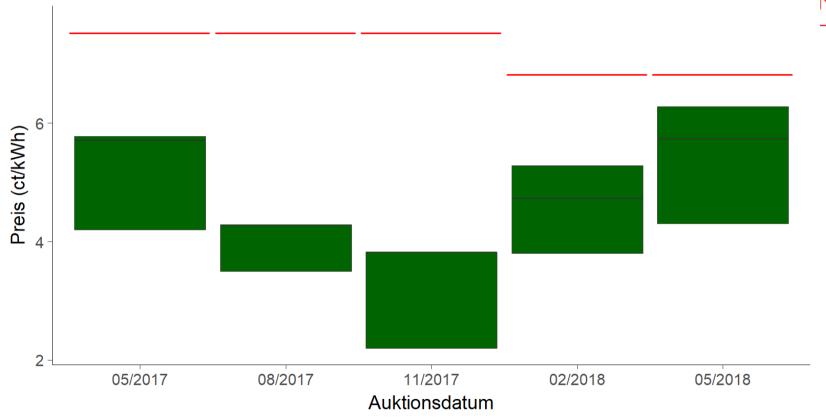

Department of Economics and Social Sciences

Eigene Darstellung nach Daten von Open Power System Data (2017)

Infrastrukturakzeptanz

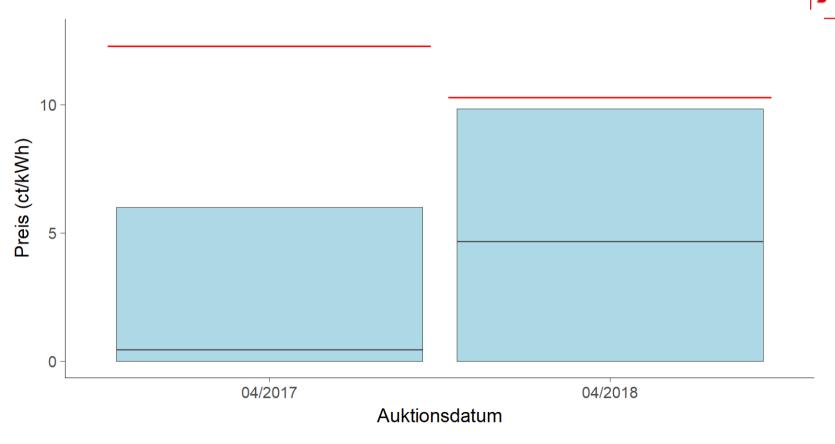


- Mögliche finanzielle Kompensation
- Bundesweite Ausweisung von Eignungszonen
- BürgerInnenkraftwerke



Wind Onshore

Auktionsparameter


- Preisobergrenzen
- Mengenbegrenzung
- Technologiespezifisch vs. Technologieneutral
- Bepreisung: Pay-As-Bid vs. Marginal Pricing
- Standortspezifische Tariffanpassung

Wind Offshore

Kapitalkosten

- Investitionskosten = hoher Anteil der Gesamtkosten
- Signifikanter Einfluss auf Ausbau
- Investitionsrisiken gering halten, um Riskoaufschläge zu senken
- Mögliche Kredithaftung durch öffentliche Hand
- Eigenkapitalbasierte Ansätze?

Technologiewahl (II)

	Produktion in TWh			
Technologie	EU Referenz- szenario	Umwelt- bundesamt	Klimazukunft Österreich	
Biomasse	4,0	6,7	7,8	
Windkraft	10,0	17,4	12,0	
Wasserkraft	44,6	45,6	42,6	
Photovoltaik	3,3	11,9	13,0	

¹ Produktion in TWh; Ausbau im Vergleich zu 2015 in TWh

Eigene Darstellung nach Daten von Commission européenne & Direction générale de la mobilité et des transports,(2016), Umweltbundesamt (2016) und Veigl (2017)

² Anteil an der Gesamtproduktion in Prozent

^{*}aus Abfall