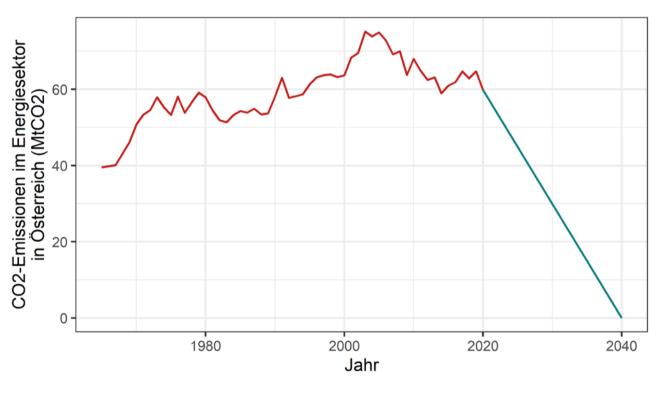


Department of Economics and Social Sciences

Edelsprit für alles? Bedarf und Angebot an Grünen Gasen in Österreich

Johannes Schmidt, Sebastian Wehrle

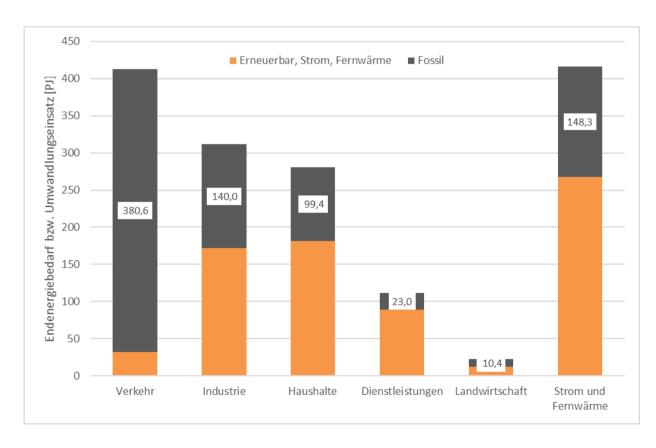
Institut für Nachhaltige Wirtschaftsentwicklung Department für Wirtschafts- und Sozialwissenschaften Universität für Bodenkultur Wien



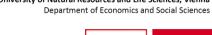
Die Herausforderung: Reduktion der CO₂-Emissionen aus der Energieversorgung

- Klimaneutralität bis 2040 massive Herausforderung
- Grüne Gase ab 2030 relevant
- Zeitnah andere signifikante und kostengünstige Optionen zur Reduktion
- Aber: heute schon
 Entscheidungen über
 langfristige
 Infrastruktur

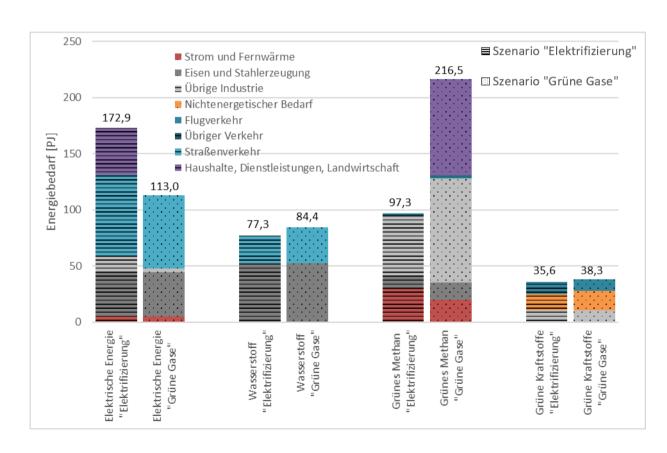
Historische Emissionen – Linearer Pfad zu CO2-Neutralität


Quelle: BP World Energy Review, WIFO, eigene Darstellung

Die Herausforderung im Detail: Transformation des Energieverbrauchs für ein klimaneutrales Österreich


- Insgesamt 801,7 PJ fossile Energie wurden in den Sektoren des Endverbrauchs und in der Umwandlung 2019 in Österreich eingesetzt
- Davon waren 55,5% flüssige und 39,5% gasförmige fossile Energieträger

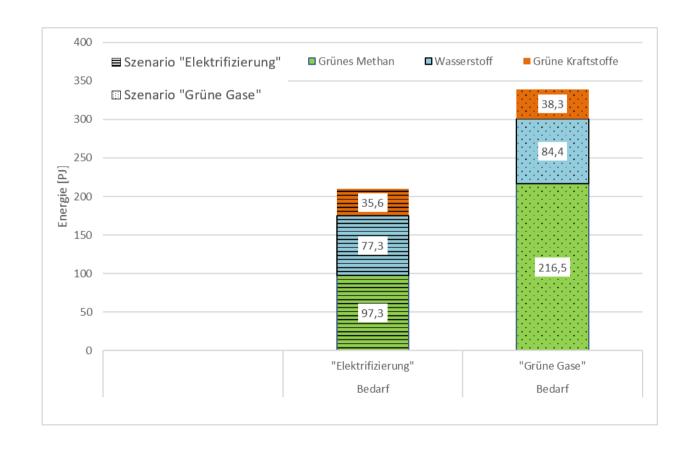
Quelle: Statistik Austria (2020a)



Szenarien für den zusätzlichen Energiebedarf in einer klimaneutralen Energieversorgung Österreichs

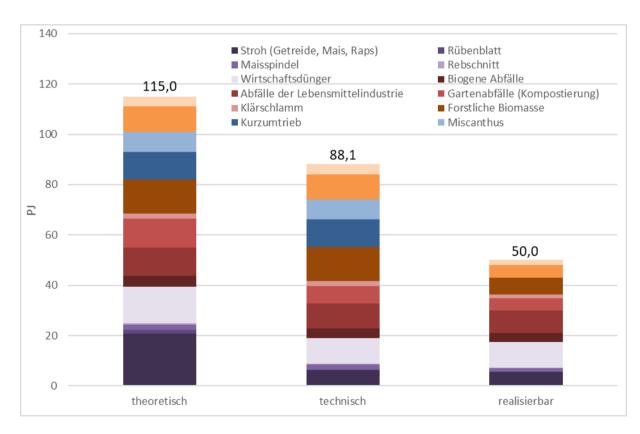
- Im Szenario "Elektrifizierung" wird Strom wo immer möglich direkt eingesetzt
- Im Szenario "Grüne Gase" werden gasförmige Energieträger zur Gebäudeklimatisierung, für Niedertemperaturprozesse und im Lastverkehr verwendet

Quelle: Eigene Analyse basierend auf Statistik Austria (2020b)


Zusätzlicher Bedarf an Grünen Energieträgern in den Szenarien "Elektrifizierung" und "Grüne Gase"

Department of Economics and Social Sciences

- Im Szenario "Elektrifizierung" werden 174,6 PJ Grüne Gase eingesetzt
- Im Szenario "Grüne Gase" werden insgesamt 300,9 PJ gasförmige Energieträger benötigt
- Dazu kommt der Bedarf an flüssigen Grünen Energieträgern

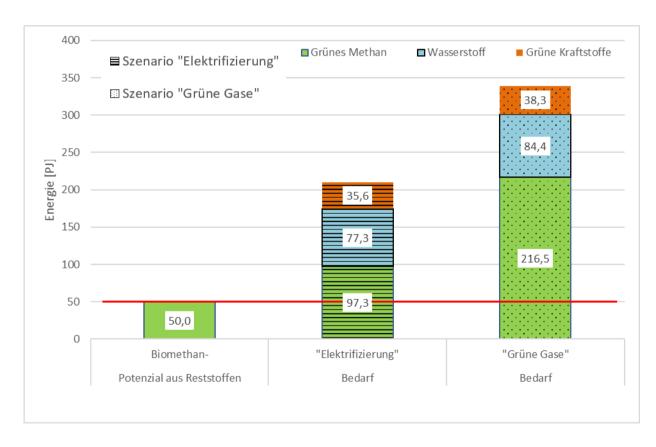


Metaananlyse des theoretischen, technischen und nachhaltig realisierbaren Potenzials für Biomethan aus Österreich

Department of Economics and Social Sciences

- Einschätzungen des theoretischen Biomethan-Potenzials divergieren erheblich
- Realisierbare
 Potenziale sind
 wesentlich geringer
 als theoretische
 Potenziale
- Realisierbares
 Potenzial könnte
 geringer sein, da
 Möglichkeit zur Netzeinspeisung nicht
 berücksichtigt wurde

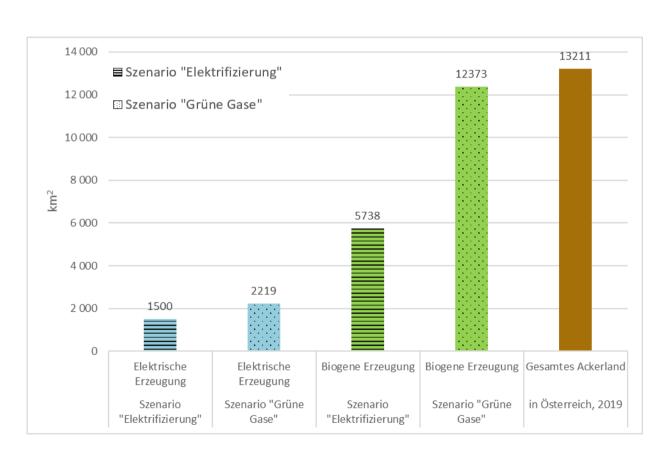
Quelle: Eigene Analyse basierend auf Dißauer et al. (2019), Lindorfer et al. (2017), Stürmer (2020), Bacovsky und Matschegg (2019) und Baumann et al. (2021)



Department of Economics and Social Sciences

Heimische Erzeugungspotenziale und zusätzlicher Bedarf an Grünen Energieträgern für eine klimaneutrale Energieversorgung Österreichs

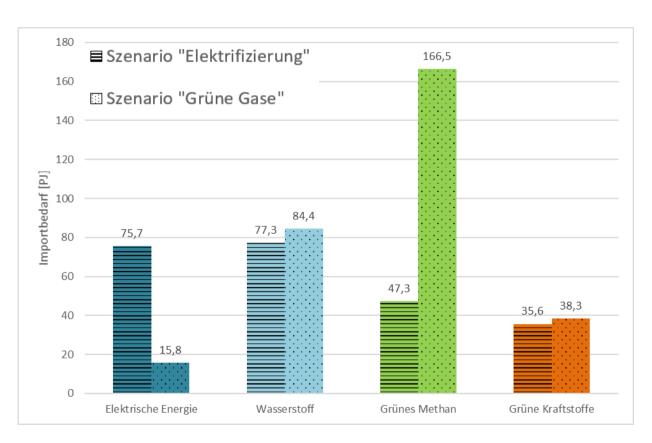
- Klimaneutralität in Österreich erfordert auch bei weitgehender Elektrifizierung erhebliche Mengen Grüner Gase
- Der Bedarf übersteigt das realisierbare Biomethan-Potenzial aus Reststoffen um ein Vielfaches
- Ausweitung der Flächennutzung oder Importe sind nötig


Quelle: Eigene Analyse

Zusätzlicher Flächenbedarf bei heimischer Erzeugung der zur klimaneutralen Energieversorgung benötigten Grünen Energieträger

Department of Economics and Social Sciences

- Die Nutzung von Biomasse zur Erzeugung Grüner Gase erfordert erhebliche landwirtschaftliche Flächen
- Werden Grüne Gase elektrisch erzeugt, sinkt der Flächenbedarf um 80% bis 90%


Quelle: Eigene Analyse, Statistik Austria (2021c)

Importbedarf an Erneuerbaren Energieträgern ohne Änderung der inländischen Flächennutzung

- Bedarf an Importen, wenn gesamtes PV
 Potential auf
 Gebäuden mobilisiert wird und die bis 2030 geplanten
 Ökostrommengen realisiert werden
- Rückgang der Importe in allen Szenarien im Vergleich zu heutigen fossilen Importen

Quelle: Eigene Analyse

Importe von "grünen" Energieträgern als Alternative?

- Fokus auf Importe ist riskant: Unsicherheit über Entwicklung von Handelsströmen.
- Alternativ zu Importen von "grünen" Treibstoffen und Gasen: Importen von energieintensiven Güter (z.b. Stahl) aus dekarbonisierten Ländern (Beispiel "solares" Aluminium von BMW)
- Senkung von globalen Treibhausgasemissionen durch Handel nur, falls Exportländer bereits stark dekarbonisiert sind.
- Im Interesse von Exportländern? Abhängig von der langfristigen industriellen Strategie in diesen Ländern.

Importe – Herausforderungen im Transport

- Transport von Wasserstoff ist aufwändig
 - Pipeline-Transport optimal allerdings energieintensiv bei großen Distanzen
 - Schiffstransport aufwändig
 - Deswegen Importe aus der näheren Umgebung (<4000km)
- Transport von kohlenstoffbasierten Treibstoffen ("Synfuels") mit existierender Infrastruktur möglich
 - Herstellung aber kosten- und energieintensiver als Wasserstoffproduktion
 - Für Anwendungen, die unbedingt kohlenstoffbasierte Treibstoffe benötigen (z.b. Flugverkehr in der mittleren Frist), bedeutet das, dass Importe auch von weiter entfernten Weltregionen möglich sind.

Importe – soziale und ökologische Kriterien

- Die landnutzungsintensive Produktion von "grünen" Treibstoffen und Gasen kann in Exportländern zu massiven sozial-ökologischen Konflikten führen.
- Nachhaltigkeitskriterien für Importe
 - Herstellung in Ländern, in denen CO₂-Emissionen im Energiesystem bereits sehr niedrig sind
 - Hochqualitative Aushandlungsprozesse zur Sicherstellung der Rechte von formellen und informellen Landnutzer*innen bei der Expansion von erneuerbarer Infrastruktur
 - Expansion erneuerbarer Infrastruktur sollte nicht mit Biodiversitätszielen in Konflikt treten.

Schlussfolgerungen

- Elektrifizierung schlägt grüne Gase in Sachen Effizienz und Kosten
- Trotzdem auch in Zukunft Bedarf an CO₂-freien Gasen und flüssigen Treibstoffen
- Restbiomasse als Quelle ist stark beschränkt
- Dezidierter Anbau von Biomasse auf Grund geringer Flächeneffizienz und hoher ökologischer Kosten abzulehnen
- Importe möglich, aber technisch aufwändig und in jedem Fall teuer. Landnutzungskonflikte in potentiellen Exportländern sind zu berücksichtigen.
- Der Ausbau von erneuerbaren Energien, v.a. PV und Wind im Inland ist in jedem Fall ohne Alternative.
- Flächen dafür sind vorhanden, aber die Konflikte um den Infrastrukturausbau werden zunehmen.

Vielen Dank!

Näheres zu unserer Forschung finden Sie auch

im Internet: https://refuel.world

und demnächst auf Twitter: @NetZero2040

